

peak A 180 ($C_9H_8O_4$ calc. 180.0423, found 180.0422) confirmed the A ring configuration. This new natural compound is, thus, 5,7,3'-trihydroxy-6,8-di-C-methyl-4',5'-dimethoxyflavanone and not, as described in ref. [8] and cited in ref. [11], as the B ring isomer.

This is the first C-methylflavanone to be found in the Didiereaceae; the simultaneous presence of O- and C-methylation is typical in this family. Such C-methylated flavonoids are relatively rare in nature [12].

EXPERIMENTAL

Material: *Alluaudiopsis marnieriana* was collected in the South of Madagascar. 100 g of bark and spine powder was directly extracted with Et_2O . After evaporation of solvent, the dry residue was dissolved in $MeOH$ and chromatographed on polyamide column (Macherey Nagel SC 6) with C_6H_6 progressively enriched in $MeCOEt$ - $MeOH$ (13). The ultimate purification of the fraction containing the new flavanone was assured by TLC on polyamide (MNDC 6) with C_6H_6 -Petrol b.p. 100-140°- $MeCOEt$ - $MeOH$ (60-26-7-7). UV fluorescence: grey-violet; R_f ($\times 100$): TLC, polyamide MNDC 11, $CHCl_3$ - $MeOH$ - $MeCOEt$ - $AcCH_2Ac$: 60-10-5-1, 85.UV. λ_{max} nm: $MeOH$: 297, 348; + $NaOAc$: 340; + $NaOAc$ + H_3BO_3 : 299, 341; + $AlCl_3$: 319, 410; + $AlCl_3$ + HCl : 317, 352 sh, 408; + $NaOH$: 340 stable. MS: 70 eV, m/z (%): 360 (85%), 207 (15%), 181 peak D (90%), 180 (100%), peak A (50%) + peak B (50%), 167 (40%), 152 (30%). 1H NMR 360 MHz Bruker (C_6D_6): δ 6.69 (1H, J = 2 Hz); 6.67

(1H, J = 2 Hz); 5.34 (1H, dd , J = 12 Hz, J = 2 Hz); 3.80 (3H, s); 3.71 (3H, s); 3.04 (1H, dd , J = 15 Hz, J = 12 Hz); 2.75 (1H, dd , J = 15 Hz, J = 2 Hz); 1.99 (3H, s); 1.97 (1H, s).

Acknowledgements—We are grateful to F. Gobert and C. Roberjot (Société Rhône-Poulenc) for the 1H NMR spectra.

REFERENCES

1. Rabesa, Z., Voirin, B., Favre-Bonvin, J. and Lebreton, Ph. (1978) *Phytochemistry* **17**, 1810.
2. Rabesa, Z. and Voirin, B. (1979) *Tetrahedron Letters* **39**, 3717.
3. Rabesa, Z. and Voirin, B. (1979) *Z. Pflanzenphysiol.* **91**, 183.
4. Rabesa, Z. and Voirin, B. (1979) *Phytochemistry* **18**, 360.
5. Rabesa, Z. and Voirin, B. (1979) *Phytochemistry* **18**, 692.
6. Rabesa, Z. and Voirin, B. (1979) *C. R. Acad. Sci. Ser. C* **289**, 167.
7. Rabesa, Z. and Voirin, B. (1980) *Phytochemistry* **19**, 710.
8. Rabesa, Z. (1980) Doctoral Thesis, Lyon.
9. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*. Springer, New York.
10. Audier, H. (1966) *Bull. Soc. Chim. Fr.* **9**, 2892.
11. Wollenweber, E. and Dietz, V. H. (1981) *Phytochemistry* **20**, 869.
12. Wollenweber, E., Dietz, V. H., MacNeill, C. D. and Schilling, G. (1979) *Z. Pflanzenphysiol.* **94**, 241.
13. Jay, M., Gonnet, J. F., Wollenweber, E. and Voirin, B. (1975) *Phytochemistry* **14**, 1605.

6-HYDROXYFLAVONES FROM *THYM BRA SPICATA*

MAHMUT MISKI, AYHAN ULUBELEN and TOM J. MABRY*

Faculty of Pharmacy, University of Istanbul, Istanbul, Turkey; *Department of Botany, University of Texas at Austin, Austin, TX 78712, U.S.A.

(Received 16 December 1982)

Key Word Index—*Thymbra spicata*; Labiatae; 6-hydroxyflavones; 6-hydroxyluteolin 7,3'-dimethyl ether; 6-hydroxyluteolin 7,3',4'-trimethyl ether.

Abstract—Four flavonoids, including two new compounds, were isolated from the leaf extract of *Thymbra spicata*. The new compounds were the 7,3'-dimethyl and 7,3',4'-trimethyl ethers of 6-hydroxyluteolin. All the compounds were identified by spectral methods.

INTRODUCTION

This is the first chemical investigation of *Thymbra spicata*, a member of the Labiatae. From a leaf extract four flavonoids were identified: the known compounds luteolin and rhamnetin and two new 6-hydroxyflavones, **1** and **2**.

RESULTS AND DISCUSSION

One of the new flavones, **1** was previously reported as its 6-O-glucoside from *Citharexylum subserratum* (Verbenaceae) [1]. The following data established the

structure of **1**. A molecular ion for the flavone at M^+ 330 indicated the presence of three hydroxyl and two methoxyl groups. The presence of hydroxyl groups at C-5, C-6 and C-4' was supported by the somewhat unusual color reactions when the compound was viewed on paper under UV light with and without ammonia. A purple color under UV light indicated a 5-hydroxyl. The dark yellow color with ammonia supported, on the one hand, a 4'-hydroxyl, but the darkness of the spot also suggested the presence of a 6-hydroxyl. Compounds with a 6-hydroxyl group usually show little or no color change with

ammonia even when they contain a 4'-hydroxyl. The compound gave a brownish colour when sprayed with Naturstoffreagenz A. The presence of a 6-hydroxyl was also indicated by the aluminum chloride-hydrochloric acid UV spectrum which exhibited a band I shift of 26 nm relative to the methanol spectrum. The lack of a band III in the sodium methoxide spectrum along with the observation that band I in the sodium acetate spectrum appeared at 398 nm compared to band I in the sodium methoxide spectrum at 394 nm argued for a substituted 7-hydroxyl. The ¹H NMR spectrum of the 6,4'-diTMSi ether of **1** (i.e. 5-hydroxyl not derivatized) in CDCl₃ clearly established a 6-hydroxyluteolin dimethyl ether skeleton. The signals for the two methoxyl groups appeared at δ 3.92 and 3.94. Since the 7-hydroxyl is known from UV data to be substituted, one of the methyl ether groups could be assigned to the 7-hydroxyl. As the aluminum chloride UV spectrum indicated that the B-ring did not contain a 3',4'-dihydroxyl group, the second methoxyl group must be at the 3'-position. All of the other UV, ¹H NMR and mass spectral data were in accord with the proposed structure. For example, other NMR signals appeared at δ 6.52 (1H, s, H-3), 6.58 (1H, s, H-8), 6.95 (1H, d, J = 9 Hz, H-5'), 7.32 (1H, d, J = 2.5 Hz, H-2') and 7.42 (1H, dd, J = 9 and 2.5 Hz, H-6'). In the mass spectrum of **1** the [M]⁺ at *m/z* 330 was the base peak; the presence of peaks at 312 (30%), [M - H₂O]⁺; 183 (15%), [A₁ + 1]⁺; 182 (12%), [A₁]; 149 (30%), [B₂ + 1]⁺; and 148 (27%), [B₂]⁺ confirmed that both the A and B rings contain one methoxyl group. That the [M - 15]⁺ peak was of low intensity and the [M - 18]⁺ peak was of greater intensity (30%), supported a free 6-hydroxyl group.

The second new compound, **2**, gave a molecular ion at M⁺ 344 in accord with a flavone containing three methoxyl and two hydroxyl groups. The purple color exhibited by the compound when viewed on paper over UV light supported a free 5-hydroxyl group. In addition, since no color change was observed with ammonia or when sprayed with Naturstoffreagenz A, one methoxyl group could be assigned to the 4'-position. This conclusion was supported by a lower intensity band I in the sodium methoxide spectrum relative to band I in the methanol spectrum. The UV spectrum in aluminum chloride-hydrochloric acid showed a band I bathochromic shift of 26 nm, again, as for **1**, typical for a flavone with a free 6-hydroxyl. Since the ¹H NMR spectrum of the mono-TMSi ether of **2** (i.e. 5-hydroxyl not derivatized) established a 6-hydroxyluteolin trimethyl ether skeleton (methoxyl signals at δ 3.94, 3.98 and 4.0), the remaining two methoxyl groups must be at the only available positions, namely 7 and 3'. All of the other ¹H NMR,

mass spectral and UV data supported the proposed structure as 6-hydroxyluteolin 7,3',4'-trimethyl ether. Other signals were at δ 6.54 (1H, s, H-3), 6.58 (1H, s, H-8), 6.96 (1H, d, J = 9 Hz, H-5'), 7.34 (1H, d, J = 2.5 Hz, H-2') and 7.5 (1H, dd, J = 9 and 2.5 Hz). The mass spectrum of **2** gave, in addition to the M⁺ at 344 (100%), peaks at 326 (25%), [M - 18]⁺; 298 (55%), [M - H₂O - CO]⁺; 182 (15%), [A₁]⁺; and 162 (25%), [B₂]⁺. These mass spectral data supported the presence of two methoxyl groups in the B ring and a third in the A ring. The known flavonoids rhamnetin and luteolin were identified by spectral data and by comparison with standard markers.

EXPERIMENTAL

Plant material was collected from Hatay (south-eastern Turkey) in late April 1980; voucher specimen ISTE 32979 was deposited in the Herbarium of the Faculty of Pharmacy, University of Istanbul.

Extraction, purification and identification of flavonoids from Thymbraya spicata. Ground air-dried leaf material of *T. spicata* L. (0.5 kg) was extracted in a Soxhlet successively with C₆H₆, CHCl₃ and EtOH. Since the CHCl₃ and EtOH extracts did not contain flavonoids, only the C₆H₆ extract was worked-up. After evaporation of the C₆H₆ extract to a small vol. *in vacuo*, the concentrate was extracted with 60% aq. EtOH. The alcoholic layer was concd to a small vol. and extracted with Et₂O. The Et₂O extract was evaporated to dryness and the residue was fractioned on a Sephadex LH-20 column (2 × 30 cm) eluted with CHCl₃, EtOH (3:1). The flavonoids were obtained in the following order: rhamnetin (5 mg), luteolin (20 mg), 6-hydroxyluteolin 7,3'-dimethyl ether (20 mg), 6-hydroxyluteolin 7,3',4'-trimethyl ether (40 mg). UV spectral data for **1** $\lambda_{\text{max}}^{\text{MeOH}}$ nm with relative intensities based on the band I as 1 given in parenthesis: 343 (1), 282 (1), 272 (sh); NaOMe, 394 (1), 300 (sh), 275 (0.5); AlCl₃, 373 (1), 293 (1), 275 (0.7); AlCl₃-HCl, 369 (1), 293 (1), 275 (sh); NaOAc, 398 (1), 330 (1.2), 279 (1.4); NaOAc-H₃BO₃, 342 (1), 282 (1.1), 270 (sh).

UV spectrum of **2** $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 340 (1), 282 (0.9), 270 (sh); NaOMe, 316 (1), 288 (sh), 272 (sh); AlCl₃, 370 (1), 295 (0.7), 260 (sh); AlCl₃-HCl, 366 (1), 294 (0.7), 255 (sh); NaOAc, 329 (1), 289 (sh), 270 (sh); NaOAc-H₃BO₃, 338 (1), 282 (0.9), 272 (sh).

Acknowledgements — This study was supported by the Robert A. Welch Foundation (grant F-130). The work in Turkey was supported by the Faculty of Pharmacy, University of Istanbul.

REFERENCE

1. Mathuram, S., Purushothaman, K., Sarada, A. and Connolly, J. D. (1976) *Phytochemistry* **15**, 838.